gyrogpsc/static/scripts/accChart.js

184 lines
6.3 KiB
JavaScript

/**
* This file defines a line chart used in the full replay page, showing Ublox horizontal accuracy,
* smartphone horizontal accuracy and distance between the positions of the Ublox
* and the Smartphone at a same time in meters, over time.
*
* @authors Timo Volkmann, Frank Herkommer.
*/
//list of all horizontal accuracies sent in by the Ublox
let allAccSerial = []
//list of all coordinates sent in by the Ublox
let allSerialCoords = []
//Defines the chart and its properties
let ctx1 = document.getElementById('accChart').getContext('2d');
let accChart = new Chart(ctx1, {
type: 'line',
data: {
labels: [],
datasets: [{
label: 'Ublox Horizontal acc. (m)',
backgroundColor: 'rgba(255, 255, 255, 1)',
borderColor: 'rgba(255, 255, 255, 1)',
borderWidth: 1,
fill: false,
pointRadius: 0.5,
lineTension: 0.5,
data: []
},
{
label: 'Smartphone Horizontal acc. (m)',
backgroundColor: 'rgb(185,190,45)',
borderColor: 'rgb(185,190,45)',
borderWidth: 1,
fill: false,
pointRadius: 0.5,
lineTension: 0.5,
data: []
},
{
label: 'Distance Ublox - Smartphone (m)',
backgroundColor: 'rgba(30, 130, 76, 1)',
borderColor: 'rgba(30, 130, 76, 1)',
borderWidth: 1,
fill: false,
pointRadius: 0.5,
lineTension: 0.5,
data: []
}]
},
options: {
scales: {
yAxes: [{
ticks: {
min: 0,
max: 20,
}
}],
xAxes: [{
type: 'time',
time: {
unit: 'second'
}
}]
},
animation: {
duration: 0
}
}
});
/**
* Function to calculate the distance between to coordinates at a same time using the vincenty algorithm.
*
* @param data all collected data.
*/
function addDistances(data){
//collect all horizontal accuracies from serial source and tcp source.
let serialHAccs = data.map(el => {
return el.ser.HAcc
})
let tcpHAccs = data.map(el => {
return el.tcp.HAcc
})
//apply vincenty algorithm on coordinates from serial and tcp source.
let distances = data.map((el, i, arr) => {
// return distVincenty(el.ser.Position, el.tcp.Position)
const plaindist = distVincenty(el.ser.Position, el.tcp.Position)
arr[i]['distance'] = plaindist
arr[i]['distanceClean'] = plaindist - (el.ser.Speed / 1000 * el.differenceMs)
arr[i]['distanceCleanAbs'] = plaindist - Math.abs(el.ser.Speed / 1000 * el.differenceMs)
return plaindist //- Math.abs(el.ser.Speed / 1000 * el.differenceMs)
})
let tcpTimes = data.map(el => {
return el.tcp.Timestamp
})
//add the data to the chart and update the hart
accChart.data.labels = tcpTimes
accChart.data.datasets[0].data = serialHAccs
accChart.data.datasets[1].data = tcpHAccs
accChart.data.datasets[2].data = distances
accChart.update()
}
/**
* Function to calculate distance between two coordinates using the haversine algorithm (less precise).
* @param coord1 first set of coordinates.
* @param coord2 second set of coordinates.
* @returns {number} distance between the two points in meters.
*/
function distanceInMetersBetweenEarthCoordinates(coord1, coord2) {
let long1 = coord1[0]
let lat1 = coord1[1]
let long2 = coord2[0]
let lat2 = coord2[1]
let earthRadiusM = 6371000
let phi1 = lat1 * Math.PI / 180
let phi2 = lat2 * Math.PI / 180
let dlat = (lat2-lat1) * Math.PI / 180
let dlong = (long2 - long1) * Math.PI / 180
let a = Math.sin(dlat/2) * Math.sin(dlat/2) +
Math.cos(phi1) * Math.cos(phi2) *
Math.sin(dlong/2) * Math.sin(dlong/2)
let c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a))
return earthRadiusM * c
}
Number.prototype.toRad = function () { return this * Math.PI / 180; }
/**
* Function to calculate distance between two coordinates using the vincenty algorithm (more precise).
* @param coord1 first set of coordinates.
* @param coord2 second set of coordinates.
* @returns {string|number} distance between the two point is meters.
*/
function distVincenty(coord1, coord2) {
const lon1 = coord1[0]
const lat1 = coord1[1]
const lon2 = coord2[0]
const lat2 = coord2[1]
var a = 6378137, b = 6356752.314245, f = 1/298.257223563; // WGS-84 ellipsoid params
var L = (lon2-lon1).toRad()
var U1 = Math.atan((1-f) * Math.tan(lat1.toRad()));
var U2 = Math.atan((1-f) * Math.tan(lat2.toRad()));
var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
var lambda = L, lambdaP, iterLimit = 100;
do {
var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
(cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
if (sinSigma===0) return 0; // co-incident points
var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
var sigma = Math.atan2(sinSigma, cosSigma);
var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
var cosSqAlpha = 1 - sinAlpha*sinAlpha;
var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
lambdaP = lambda;
lambda = L + (1-C) * f * sinAlpha *
(sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
} while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0);
if (iterLimit===0) return NaN // formula failed to converge
var uSq = cosSqAlpha * (a*a - b*b) / (b*b);
var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
var s = b*A*(sigma-deltaSigma);
s = s.toFixed(3); // round to 1mm precision
return s;
}