/** * Function to calculate distance between two coordinates using the haversine algorithm (less precise). * @param coord1 first set of coordinates. * @param coord2 second set of coordinates. * @returns {number} distance between the two points in meters. */ function distanceInMetersBetweenEarthCoordinates(coord1, coord2) { let long1 = coord1[0] let lat1 = coord1[1] let long2 = coord2[0] let lat2 = coord2[1] let earthRadiusM = 6371000 let phi1 = lat1 * Math.PI / 180 let phi2 = lat2 * Math.PI / 180 let dlat = (lat2-lat1) * Math.PI / 180 let dlong = (long2 - long1) * Math.PI / 180 let a = Math.sin(dlat/2) * Math.sin(dlat/2) + Math.cos(phi1) * Math.cos(phi2) * Math.sin(dlong/2) * Math.sin(dlong/2) let c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)) return earthRadiusM * c } Number.prototype.toRad = function () { return this * Math.PI / 180; } /** * Function to calculate distance between two coordinates using the vincenty algorithm (more precise). * @param coord1 first set of coordinates. * @param coord2 second set of coordinates. * @returns {string|number} distance between the two point is meters. */ function distVincenty(coord1, coord2) { const lon1 = coord1[0] const lat1 = coord1[1] const lon2 = coord2[0] const lat2 = coord2[1] var a = 6378137, b = 6356752.314245, f = 1/298.257223563; // WGS-84 ellipsoid params var L = (lon2-lon1).toRad() var U1 = Math.atan((1-f) * Math.tan(lat1.toRad())); var U2 = Math.atan((1-f) * Math.tan(lat2.toRad())); var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1); var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2); var lambda = L, lambdaP, iterLimit = 100; do { var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda); var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda)); if (sinSigma===0) return 0; // co-incident points var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda; var sigma = Math.atan2(sinSigma, cosSigma); var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma; var cosSqAlpha = 1 - sinAlpha*sinAlpha; var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha; if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (ยง6) var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha)); lambdaP = lambda; lambda = L + (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM))); } while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0); if (iterLimit===0) return NaN // formula failed to converge var uSq = cosSqAlpha * (a*a - b*b) / (b*b); var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))); var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq))); var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)- B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM))); var s = b*A*(sigma-deltaSigma); s = s.toFixed(3); // round to 1mm precision return s; }